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Broken symmetry is characteristic of arrays of quantum dots and can be observed in the failure of selection
rules of optical spectroscopy or in the dielectric properties. Here we discuss scanning tunneling spectroscopy,
where electrons are detached or attached. In the lowest order of description (sometimes known as Koopmans
theorem), the orbitals of a system are regarded as given and one adds or removes electrons from these orbitals.
If one has a half-full band of states whose energies have a reflection symmetry about the center, the density
of states should be symmetric about the energy of the highest occupied state. Features that are special to
arrays of nanodots and lead to the breaking of the expected symmetry are identified. Computations of the
density of states of an array of Ag nanodots that are in accord with the available experimental observations
are also provided. For a disordered array, the response of the STM probe can be qualitatively different at
different lattice points and we interpret this in terms of a change in the nature of the ground electronic state

of the array when it is more disordered.

1. Introduction cupied molecular orbitals have a mirror symmetry about their
midpoint. For every energy of removing an electron there is

In scanning tunneling!® (STM) experiments321518 gne the mirror i for addi loct The “densit
removes or adds electrons to the sample, depending on the € mirror Image energy for adding an electron. 1he “density

direction of the applied voltage. In this sense, scanning tunneling of states” as mea;ured by scanning tunneling spectroscqpy wil
spectroscopy is analogous to photoelectron spectroscopy, (wher herefore shqw mirror symmetry when plotted as a fgncthn of
an electron is removed) or to attachment experiments (where itthe voltage d|ffe_rence between the sample_and the t'.p - Itis the
is added). In a simple one electron orbital picture, electrons are Preakdown of this expected symmetry that is the subject of the
removed from or added to given orbitals of the system. The Présent analysis.
orbitals of then — 1, n, andn + 1 electron systems are, inthis ~ We specifically identify one particular characteristic of
simple picture, the same. In particular, the lowest ionization quantum dots as primarily responsible for the breakdown in
voltage is the energy of the highest occupied molecular orbital Symmetry. This is their so-called “charging energy”, which is
(HOMO) while an added electron is placed in the lowest atypically low (0.338 eV for the Ag nanodéts®that we will
unoccupied molecular orbital (LUMO). This picture is retained specifically try to simulate. It is low when it is compared to the
even when the orbitals are computed such that an electron movegorresponding values for most atoms). The charging energy is
in the mean field of the other electrons and the quantitative itself measured by scanning tunneling spectroscopy when the
statement is often known as Koopmans theofénit is lattice is so very expanded that the dots are not interacting. It
recognized to be an approximation, but it is a very useful is the energy required to add another electron to an isolated
approximation because it allows us to think in simple terms single dot. It takes energy because this extra electron is repelled
about adding or removing an electron. In this paper we argue by the electrons already in the dot. The dimensions of a dot are
that this approximation will break down for arrays of quantum large compared to an atom and this means that the charging
dots. We discuss what is special about quantum dots that makesnergy is not high. But it is finite and measurable. In metals,
the breakdown serious and present computational results inthe finite charging energy is known as the “Coulomb blockade”
support of our physical considerations. We also suggest thatto conduction:+1931
there is experimental evideri€é8that can be explained by our The low charging energy also means that electrons on
considerations. adjacent dots are not strongly repelling. We include this
The implications of Koopmans theorem are particularly easy repulsion in the Hamiltonian that is used.
to visualizze2 for such systems _(e.g., molecules_with alternant  aApother experimental observatirthat we would like to
symmetry*2) where the energies of the occupied and unoc- eypiain is the scanning tunneling spectroscopy of expanded
T Part of the special issue “C. Bradley Moore Festschrift”. lattices. Of_ten’ up to the inevitable n.Oise’ t.he spectrum is the
* Corresponding author. Fax: 972-2-6513742. E-mail: rafi@fh.huji.ac.il. S@me for different positions of the lattice. Itis, however, found
* Chercheur QualifieFNRS, Belgium. that when there is more variability in the size of the individual
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dots, the spectrum at different locations can be one of severalenergetically favorable for a (smaller) dot to transfer an electron
(two or more) distinct types. to an adjacent larger dot, leading to an ionic lattice. It can even
The low charging energy cannot be the whole story becausebe the case that a particularly large dot will accept two electrons.
the experiment$18clearly show that when the lattice is very  The differently charged dots differ in their charging energy and
compressed, the STM measured density of states becomeso an STM probe leads to site-dependent response.
symmetric. Therefore, in section 2 we discuss three electronic  The coupling of adjacent dots depends both on the radius of
terms relevant to the description of an array of dots. It is the the dots and on their spacing. The size distribution of the dots
interplay between these three energies which determines thecan therefore affect this coupling in two different ways: first,
coupling regime. The problem is more complicated to describe directly through the size dependence and, second, indirectly,
because one has to consider two dimensionless ratios. On thdecause a wider size distribution can lead to packing imperfec-
other hand, it makes it richer because with two dimensionless tions of the lattice. These variations in the spacings are seen in
numbers one can have a whole plane of possibilities. In other the STM scan of the lattic¥.
words, there is a gamut of electronic isomers that are podéible  The actual computation of the orbitals of the lattice has been

and we will comment on this phase diagram. described in detail in several earlier pap&& We use a
Pariser-Par—Pople Hamiltoniar#:-3°which includes both the
2. Electronic Structure of Arrays of Quantum Dots Coulomb blocking (the so-called, Hubbard term) and also a

Coulomb repulsion between electrons on adjacent dots
Arrays of quantum dot$1%17have three features that allow

for the control and tuning of the electronic properties of the no n R

array. One degree of control is the (relative) experimental easeH = ) o, E; + z Bi B +

with which the array can be compresséd! In this way, the i= 1]

extent of overlap of the wave functions of adjacent detad nearneighbors .

hence their electro_nic couplirgcan be varie_d. Qutside of the } | E--(E-- — 1+ }Z'y" EE 2.1)

dot the wave function falls exponentially with distance and so A 24 U

even moderate variations in the spacings of the dots result in

large changes in the inter dot coupliffgn this paper we will The Hamiltonian is written in the notation of the unitary

vary the distance between the dots (the lattice spacing) so as taqroup22° Ej is the operator that determines the charge on the

examine different coupling regimes. We will use the coupling sitei while E; moves an electron from sifeto sitei. The first

as a function of distance as determined b3f by fitting to the two terms in (2.1) are therefore the"ekel (or tight binding)

measuret! second harmonic response of an array of Ag Hamiltonian wherey; is the ionization potential (IP) of thigth

nanodots. dot,i = 1, ...,n and the couplingpj, is the transfer integral,
The second feature is the charging energy of the dot. As which is nonzero between near neighbors onlyg, y, andl

already mentioned, it is atypically low. Simple electrostatic carry labels of the sites because the dots are not equivalent due

considerations suggest that the charging energy will decreaseto the fluctuations in size. As an example, the charging energy

with increasing size of the dot, as is further discussed below. can be estimated ak = €/C(R), where C(R) is the size

Therefore, the charging energy can be varied via the syntheticdependent finite capacitance of an individual d6(R) =

procedure that is used to prepare the dots. Values as low ashreeR, whereR is the radius of the doty is the permittivity

0.05 eV have been measured for larger metallic dots. In the of vacuum, anck is the dielectric constant of the material. It

computations below we shall use the value (0.338 eV) that was follows that the fluctuation in the charging energy scal®hs

measured for the Ag nanodots used in the experirtfanhich = I(OR/R). The transfer integrg® depends on the distan@®

are about 3 nm in size. between the dots, and we use the following functional f§rm
Considerable control of the electronic properties is also _

available through another experimental condition. The synthetic f = (Bo/2)(1 + tanh[O, — D)/ALR]) (2.2)

fhe spread in Sizes of the dots. The istibution cannot be WCh decays exponentially as exf/2RL) at large inferdot
extremely sharp but it can be narrow (about 10%) or broader. separation. Here there are two sources of variations

Individual dots have discrete electronic states because of their 88 = B(DI2RL)[(SD/D) + (SRR)] (2.3)
small size, to within which the electron is largely confined. The

HOMO is therefore similar to the orbital of a particle in a Inthe computation we dra®andD from a uniform distribution
spherical box of radiu. If the potential outside is infinite,  of a specified width about its mean.

the energy can be readily computed analytically and scales as Just as the third term in the Hamiltonian (2.1) is the
R~2. The radius of the dot determines therefore the energy of electrostatic repulsion between two electrons on the same site,
the highest occupied orbital and also the charging energy. the last term is the repulsion between two electrons on different
Fluctuations in the size of the dots imply fluctuations in both sites. The restriction = | is indicated by the prime on the
the energy of the highest occupied orbital of the dot and in the summation sign. The lack of similarity between the third and
charging energy. The fractional fluctuations are roughly the same fourth term is only apparent. It stems from Pauli principle
because both decrease with increasing size of the dot. Therestrictions. Since we use one valence orbital per dot, only
absolute fluctuations in the orbital energies of the dots are far valence electrons of opposite spins can occupy the same dot.
larger because the typical orbital energy is a few eV's i.e., an But there are no such restrictions on the repulsion of electrons
order of magnitude larger than the charging energy. An on adjacent dots. The magnitude of the electrostatic repulsion

important dimensionless variable is the ratha/I of the is proportional td but decreases with distance between the dots,
fluctuation in the orbital energy to the charging energy. For a so it is less important when the array is highly expanded. On
narrow size distributiod\a/l < 1. It is the opposite casao/| the other hand, in a hexagonal array, each dot has six near

> 1, where individual dots in the array can exhibit distinct STM neighbors so this term is not negligible. Explicitly, in the
responses. The physical reason is that, when> I, it can be distance rang®/2R >1, which is of interest here; = 1/e(D/
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2R). We use a unitary group ba¥i€° to diagonalize the I =03eV Ao=0075eV
Hamiltonian. In this basis the electrostatic repulsion terms are

diagonal. The computational effort is needed only to diagonalize

the dot-dot electron-transfer operatdtgs 1210 ]
Itis the explicit inclusion of the electrostatic repulsion energy @

in the Hamiltonian that will lead to the asymmetry in the density gb 09 | — .

of states. That is, the energetic cost of adding an electron is not 5 = = =

the mirror image of the cost of removing an electron. In other 5 06 - E i E ]

words, the Hamiltonian (2.1) does not admit of an orbital picture. 15 = - o

The energy of any one electron depends specifically on where g 03- = = =

the other electrons are and not only on their average field. The N

computational cost of exactly diagonalizing a Hamiltonian, 0 = — q

which contains explicit correlation between different electrons 6 electrons 7 electrons 8 electrons

is high. We therefore limit the computations to the smallest

hexagonal lattice, which has seven sites. Details about theFigure 1. Energies of the possible electronic states for a very expanded
diagonalization are provided in our earlier papér® hexagonal array of seven dots. Equation 2.65a@r= /4 = 0.075 eV.

. - o . . The zero is chosen such that= 0. It is emphasized that these are
The one different technical point in this paper is that, for state energies and not orbital energies. The three columns differ in the

each lattice ofn sites and each interdot separation, we Carry nymber of valence electrons, as indicated. There are 490 states for the

out three computations, for — 1, n, andn + 1 electrons. In  six and the eight electron cases. For the six electrons, the lowest band,

other words, we do not invoke Koopmans theorem. 35 states, is covalent. Each electron is localized on a different dot.
When the lattice is considerably expanded, the Hamiltonian The band higher up, 210 states, has one dot with two electrons (and

(2.1) assumes a simpler form because the transfer of electrongW0 empty dots). Further up is an even more ionic band, with two dots
from one dot to another can be neglected eing negatively charged, etc. The separation between the bands is due

to the finite charging energlyand the spread in the energies is due to
the fluctuations in the size. When the fluctuations are wider, the bands
H H. = E + will begin to overlap, as shown in Figure 2. For the eight electrons,
site Zai i already the lowest band, 35 states, is ionic since one dot has two
= electrons. The band higher up is doubly ionic, etc.

D2R>1 n

2. 12 A
22 LB (B —1)+ EZ vi Bi B (24) that the six electron states will be accessed at a negative voltage
= H while the eight electron states are seen at positive voltages. The
We refer to this Hamiltonian allsie because it is diagonal in ~ €nergy scale in Figure 1 corresponds to a negative voltage for

a site basis set and its eigenvalues can be simply written ~ the left column of states and to positive voltage for the right
column. The lack of symmetry that we are talking about is that

1 10 at a given energy we do not have corresponding states.

E,= Z(’»ini +=% Ln(n — 1) + ‘Z'Vij n n, (2.5) This failure of Koopmans theorem is easily seen analytically

1= 2= 247 in the limit of a highly expanded lattice, eq 2.6. Consider adding
or withdrawing an electronyini = n+ 1 or >ijn; = n — 1,
respectively. The fluctuations in the site energies need to average
out, Yioa; = 0, but because the sites need not be uniformly
occupied, this does not implyinioa; = 0. If there is no charging
energy term in (2.6), the change in energy of the stateds
wherej is the site whose occupancy has changed. Say first that
then electrons are evenly distributed over thsites. With the
last term in (2.6), adding an electron to the neutral array means

A limit that_ readily provides insight _is the very highly that one site must now be doubly occupied and its energy is
expanded lattice. Then the electrostatic repulsion betweenhigher by the charging enerdy Since we assume that each

electrons on different dots can be neglected. The state energiesSite is sinalv oceupied. removing an electron does not result in
are simply the sum of the energies of the different sites gy pied, 9

a loss in charging energy. Computational examples, using

n n

Heren; is the number of electrons on sit@and for a lattice to
which no electron was added or withdrajwm; = n. Otherwise,

the sum is larger or smaller by unity, depending on the sign of
the voltage on the STM tip. Different eigenstates differ in the
distribution of charge (and spin) on the different sites. We
reiterate that (2.5) and also (2.6) below are not orbital energies
but energies of the many electron eigenstates.

n n energies obtained by an exact diagonalization of the full
En= Z()Lini +-) Iin(n, — 1) Hamiltonian, are shown in the figures below.
= = Equations 2.5 or 2.6 imply that the deviations from symmetry

n n 10 (or, in. general, deviationg from Koqpmans theorem.). occur
—a Zn‘ + Soan +=-YInn — 1) (2.6) prlmar|ly fpr the lower excited states i.e., forllow (posltlve or

£ negative) tip voltages. The reason is that the higher excited states
of the uncharged dot are characterized by a nonuniform
In the second line we wrote the site energy in terms of the meandistribution of charges. Therefore, whether adding or withdraw-
valued and the particular fluctuation at a given site. In other ing an electron one will have charging energy effects. It is only

words,da; is a random number in the rangsio. the lowest excited states for which the charges are uniformly
Figure 1 shows the energies of the possible (singlet) statesdistributed, one per site, that it makes a qualitative difference
of a seven dot hexagonal lattice at very low disorder= 1/4, if an extra electron is accommodated or if an existing electron

with six, seven, and eight electrons, respectively. It is empha- is withdrawn. These lower excited states are but a fraction of
sized that eq 2.6 and Figure 1 show total (electronic) state the total number of singlet states (35 states out of 490 for six
energies (and not orbital energies) and that the number of electrons on seven sites, these are the lowest band in the left
electronic states depends on the number of electrons. We useolumn of Figure 1) and so the symmetry breaking in never
the convention (sometimes called a highly asymmetric junction) extreme.
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En= Z iaiknik +% n n(ny— 1) (2.7)

extended valence states

rppp term included
2.

L5 - . .
] Herek sums over all the possible (valence and excited) states

. == | of a dot in the energy range of interest angdis the occupancy
" ﬁ | of the kth state on the doit Also in this extended form, the
gﬁ 0.5 = = second term ensures an inherent asymmetry in the density of
5 = i states.
5 . I =03eV Aa=0.075eV
5 ‘ ‘ ‘ ‘ 3. Scanning Tunneling Spectrosco
'g I =03eV Ao =025V g g9=p Py
5 L5 , Following the work of Bardeef/*6the “density of states”
8 = as measured in an STM experiment at the isisethe weighted

1 i sum

05 | LDOS = Zcimé(Em - E) (3.2)
m
0-

: wherecim is the charge on the siiaNherJ the system is in the
6 electrons 7 electrons 8 electrons eigenstaten of the Hamiltoniang;, = [n|E; ML E is the energy

Figure 2. Energies of thé possi‘ble eI;ctronic states for a very expanded as determined by the voltage on the tip. In terms of the operator
hexagonal array of seven dots. Same as Figure 1 but the top paneIE" that determines the charge on the site, one can formally write

includes electrostatic repulsion between electrons on different dots, secthe local density of states as

eq 2.5. The bottom panel has higher disorder than in Figure 1. Now N N
the bands discussed in the legend of Figure 1, are overlapping. The LDOS = Tr[E;0(H — E)] (3.2)
extent of disorder shown for the bottom panel is quite realistic.

The eigenenergies in (3.1) that we use are forrthe 1 or

Figure 1 provides the essence of what we have to say. Anh + 1 electron states of thesite array. (We compute for =
STM scan is just a scan of this figure with the technical 7.) We normalize the LDOS by the number of electrons. The
refinement that each state is weighted by the charge on the sitéPresence of the electrostatic repulsion terms in the Hamiltonian
over which the tip is located. See eq 3.1 and also Figure 7, means that these are not in a mirror image relation to one
below which is an STM spectrum showing a band structure. another. This can be seen analytically when the lattice is highly
Figure 1 is drawn for the simple limit of eq 2.6. Therefore, in €xpanded so that eq 2.6 applies. It is also shown in Figure 1.
Figure 2 we show separately the role of two effects, effects [N the actual computations we approximate the delta function
included in the full computation. The top panel is eq 2.5, i.e., PY including all the eigenstates whose energies are within a
including electrostatic repulsion of electrons on different dots. narrow finite interval E — AE/2, E + AE/2] with the weight
The amount of disorder is the same as in Figure 1, namely low. /AE. At a finite temperaturd” we sum over all states with a
The bottom panel shows the role of increased disoriters I. Gaussian weight centered abdliwvith a widthkT wherek is
Either effect tends to make the energies more uniformly spread.Boltzmann’s constant

The full computation includes one more term, allowing for .
electron transfer between adjacent dots. LDOS(T) = ;CimG((Em — Bk (3-3)

We caution the reader not to draw the conclusion that we
are demolishing Koopmans theorem. We are talking small The experiment often takes an average over many sites of
energy differences, of the order of the charging energy. Thesethe sample. We can mimic this by (i) repeating the computation
are measurable in an STM experiment and hence we need toof the LDOS for a given site but for a different set of size
make corrections for them. But on the whole it is a correction distribution of the dots, while ensuring that the sum of the
and not a change in perspective. The asymmetry in the densityfluctuations in the site energies averages Quba; = 0, and
of states that we report below, computed for a realistic (ii) averaging over all sites.
Hamiltonian is not much more than 20%. Moreover, it is a
correction made necessary by the atypically low value of the 4. Results

charging energy as is special to the case of quantum dots. When Figure 3 is a typical result for the LDOS vs the scanning
the charging energy is far higher, it is not necessary to exactly yoltage, for weakly interactind/2R = 1.4) dots with a narrow
diagonalize the Hamiltonian (21) because states that differ in size distribution at a low temperature_ Shown is the LDOS
their energy by the order dfwill be only weakly interacting.  averaged over the six external sites of a hexagonal array of seven
A second cautionary note concerns the representation of thedots, for a narrow (5%) size distribution. The direction of the
electronic states of the isolated dots. The computations we showasymmetry in the LDOS is as in the experimel§t& namely,
below are for interacting dots, when their coupling, as measured a higher peak for electron detachment. This is as expected since

by the magnitude of the transfer integfhlis finite, cf. e 2.2.  in the rangeD/2R > 1 one can use the approximate eq 2.5 to
The approximation (2.6) is valid only whe¢h<< 1. In this limit argue that for six electrons over seven sites there will be many
the dots are isolated, and one knd#% that in an STM states without Coulombic repulsion. These states will give rise

experiment one can see not only the valence orbital of the dotto a peak at a low energy, as seen in the experiment and in the
but also excited states. Hence a physically more correct figure.

asymptotic limit is given using an “extended ¢kel” repre- The energy scale used in Figure 3 is set for a photoelectron
sentatiof® for the energies of the dots spectrum. Explicitly, we plot the energy of the eigenstéig,
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Figure 3. Computed charge weighted local density of states, LDOS, Figure 5. Computed charge weighted local density of states, LDOS,
eq 3.3, at 20 K for a lattice of seven dots expanded beyond the metaleq 3.3, at 20 K for a lattice of seven dots compressed past the metal to
to insulator transitiofd® See text for definition of the energy scale. The insulator transitio#® The recovery of the mirror image nature of the
results shown are the LDOS averaged over sites 2 to 7, which are theSTM spectrum upon compression is easy to understand. 2R

outer sites of the hexagonal array of seven dots. See Figure 4 for site-decreases, the coupling of the dots increases DBR ~ 1.3 the
specific spectra. coupling in the Ag nanodots array is comparable to the charging energy
(=Mott transitior?®). At closer packings one can begin to neglect the
role of the charging energy so that the spectrum of states becomes
Huckel-like. Then Koopmans theorem is valid.

80 ;

60 | 80,
@ f
8 40 60 r
’4 t
o
20 - = 40
5
0" 20 -
energy/eV 0 D/‘12R = 1'40 : 5
Figure 4. Computed charge weighted local density of states, LDOS, )
eq 3.3, at 20 K as in Figure 3 but for two particular sites. Site 1 is the energy/eV

central site of the hexagonal array of seven dots. This site has strong
electrostatic repulsion with six other sites. Figure 6. Computed charge weighted local density of states, LDOS,
eqg 3.3, at 20, 300, and 3000 K for a lattice of seven dots expanded
minus the ground-state energy of the original seven electron beyond the metal to insulator transiti&hThe density of states of a
state and set the zero as in Figure 1, @e= 0. The energies lattice of seven dots is low so, in comparison to experiment, one needs

d.f dB/2R and . b f el to go to higher temperatures to see a symmetric LDOS. This is because
are computed, for ea and a given number of electrons, o computed mean spacing of states is higher than it really is so it

by a full diagonalization of the Hamiltonian, eq2.1. The interdot requires a higher temperature beftfeexceeds the mean spacibg
coupling, eq 2.2, is the same as that used in our earlier Therefore, the computations at 20 and 300 K are practically the same
studied522of arrays of small Ag nanodots. The fluctuations in Wherea_s in t_he experiment they will differ. The correct parameter for
size for a given array are kept the same for any number of comparison ikT/D.

electrons and for any value &f/2R. The computations shown
below as Figures 37 are an average over 100 samplings of

the LDOS. This is to mimic the averaging over many sites in The limit of a smallD/2R is shown in Figure 5. As in the

the expenmer_nal spectra. ) i experiment, once the lattice is compressed and the dots are
To emphasize the role of the electrostatic repulsion between strongly interacting, the asymmetry disappears. For this close
electrons on adjacent dots, Figure 4 is a computation with the packing the electron-transfer coupling between the dots (as
same parameters as Figure 3 but without averaging over themeasured bys) dominates the electrostatic terms and the
sites. One spectrum shown in Figure 4 is for the central site. spectrum becomes metallic like.
This site is not included in the averaging carried out in Figure  |ncreasing the temperature, Figure 6, allows more states to
3. The spectrum for the central site is not quite similar to Figure contribute at a given tip voltage and the asymmetry gradually
3. This is because the central site has six near neighbors, unlikedisappears as the temperature is increased. One can readily
the external sites which have only three. The spectrum for the estimate the temperature at which the asymmetry will begin to
central site is thus closer to experimental reality for a hexagonal even out. This is when many states contribute in an energy
lattice than Figure 3. One can then ask why do we not compute interval of KT. Also the gap where there are no states fills up
for a larger hexagonal array, e.g., one of 19 dots where theredue to thermally assisted transitions.
are two layers of dots surrounding the central one. The answer When the spectrum of excited states of the array is plotted,

is that, for us, this is computationally intractable. For 19 sites,
the Hamiltonian matrix is about 3 billion times 3 billion in size.
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Figure 7. Computed charge weighted local density of states, LDOS,
eq 3.3, at 20 K for a lattice of seven dots, averaged over all sites.
Computed for a narrow size distributiodp. = 1/4 = 0.075 eV, as 05 - 1
used also in Figure 1. The bands seen in Figure 1 are clearly resolved [

in this computedSTM spectrum.

0 et ‘
0.5 1 1.5

o

Figure 1, it is seen that it has several bands. The less compressed
is the array, the less overlapping are the bands. A narrow size
distribution, such thado. < I, also serves to keep these bands
apart, Figure 1. It is easiest to discuss these bands in the limitFigure 8. Computed charge-weighted local density of states, LDOS,
D/2R > 1 where an ana'y“ca' express|on for the energy, (25) eq 3.3,-at 20K fora |attlce of Se.Ven d(?ts, Same as Figure 3 but without
or (2.6), is available. For six electrons on seven sites, the lowest2Veraging over the sites and with a higher disord#R/R = 0.075 or

. > da = 0.75 eV).
band of states is the one where there is no more than one electron
per site. (There are 35 such (singlet) states for six electrons on. . .
seven sites.) These states are not degenerate because the d(ﬁsggnupg tgicnufoi:agne that is singly occupied than for one that
are weakly coupled but they are quite close in energy. The next y occupied. . N
band of states is separated from the lowest band by the charginq That the_r €i1s,in principle, an effect.of a broe_ld size distribution
energyl. This is the band where two sites are empty, one site ;ﬁshowtn '.? F'g?re 3.‘ PI((j)tteddm Flgu(:edS is the L'It:ilost for
is doubly occupied and four sites are singly occupied. There : eretnd3| es (I)' a I?Otrh ere_t expande arrayl,_ Wi OltJ aTnﬁ/
are 210 such (singlet) states. The coupling between the dotsr‘ape";1 € _sag:p mfgs ob e sl edene:gles,t_ coup |r:gsl,<_e C'Th €
broadens the ground and the first excited band. As the array jsSPectrum Is theretore bumpy and not continuous fooking. the
compressed and the coupling becomes stronger, there comes eason for the differences in the spectra of different sites is, as
point when the two bands merge. This is analogo’us to the Mott iscussed above, due to different occupancies of different sites,
nonmetal to metal transition. But when the lattice is expanded, for thelgroun_(tzl an(:]_tr;leblower excflt_t:;dlstates. fj:_onsurjler, ai_aﬂ
the two bands are not overlapping. Higher in energy is the band exampie, a site, which because of IS larger radius, has a nig
where two sites are doubly occupied, and even further up, threeIP. Such a site will be preferentially occupied not only in the

sites are doubly occupied. In principle, these bands could beground State .bUt also in !ow-lying excitec_zl states. It is only f_or
resolved by scanning tunneling spectroscopy. Several factorsStates at far higher energies that such a site will be preferentially

act so as to merge the bands: (i) fluctuations in the site energiesempty' In Figure 8, site 2 is of this type. Itis doubly occupied

(which can be large enough to change the whole picture, so weam_j is quite rgsilient both to acqgiring an extra e'eCtFO” orto
discuss them further below), (ii) electrostatic repulsion between losing one of its electron. Site 7 is exactly the opposite.

electrons on different sites, and (iii) coupling between the dots.
Figure 7 shows that the band structure can be resolved in the

LDOS spectrum. The computations clearly show that there can be nearly
The role of a broad size distribution deserves a special isoenergetic electronic states with a qualitatively different
discussion because qualitatively new features occur. For ex-distribution of charges on the sites. It is customary to talk of
ample, at largeb/2R it is evident from eq 2.6 that the ground  fluxional molecules with many geometric minima. Here it is
state can be ionic. In other words, if because of a fluctuation a the electrons that are fluxional. At a given configuration of the
site has a low IP, it may be energetically favorable for its lattice, the electrons can assume different arrangements with
electron to be ionized and placed on a site with a high IP. The comparable energies. The one simple limit is a lattice that is
gain,dq, in energy can compensate for the additional charging compressed enough that the dot-dot coupfincan overcome
energy. The LDOS is a site-charge weighted density of states,both the electrostatic and the size disorder effg&ts,| or da.
eq 3.1. An ionic ground state could be seen by scanning Then the lattice is metallic, meaning that the electrons can be
tunneling spectroscopy as different spectra of different sites. assigned to delocalized molecular orbitals. The electron-transfer
On the other hand, as the energy is scanned, all states and natoupling is strong enough to overcome both the electrostatic
only the ground state contribute to the LDOS. As we mentioned costs of moving the charge and any gap in the IP’s of adjacent
several times, many excited states are ionic and this is onesites. There are two opposite limifs,< do. < |, for a narrower
characteristic of arrays of nanodots. To observe an ionic groundsize distribution and/or higher charging energy ghek | <
state one needs therefore to look at the low voltage spectrum.da for a broad size distribution and/or lower charging energy.
Adding an electron will occur at a lower voltage for a site that As can be seen from eq 2.5, in either case there is much scope

energy/eV

5. Electronic Isomers
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for electronic fluxionality but whem < da the scope is richer: (2) Alperson, B.; Rubinstein, I.; Hodes, G.; Porath, D.; Millo,Appl.
For a broad size distribution, very low energy ionic states are Phys: Lett1999 75, 1751 o
possible. The intermediate regimég < 8 < |, is a typical (3) Banin, U.; Cao, Y; Katz, D.; Millo, ONature 1999 40Q 542.
Mott insulator!® The dot-dot coupling cannot overcome the (4) Bardeen, Jphysl' Re. Lett. 1961, 6, ?7'
charging energy. But another linft281 < 8 < dq, is not as Che(rf])lggg"iqd"'l%' G.; Steigerwald, M. L.; Brus, L. Bnnu. Re. Phys.
familiar. nge the coupling can overcome the charging effec'gs, (6) Berry, R. S.; Bonacic-Koutecky, V. Gaus, J.; Leisner, T.: Manz,
but the orbitals are not yet delocalized. One has small domains ; Reischi-Lenz, B.; Ruppe, H.; Rutz, S.; Schreiber, E.; Vajda, S.; de Vivie-
over which the electrons can move, but overall, they are still Riedle, R.; Wolf, S.; Wete, L. Adv. Chem. Phys1997 101, 101.
localized. 7) Chen, C. J. Unified Perturbation Theory for STM and SFM. In
h ified bation Th f d
Scanning Tunneling Spectroscopy; INViesendanger, R., Githerodt,
H.-J., Eds.; Springer-Verlag: Berlin, 1993; Vol. 29, p 141.

(8) Chen, S.;Ingram, R. S.; Hostetler, M. J.; Pietron, J. J.; Murray, R.
Scanning tunneling experiments (STM) showing that the V\gés%aafszgé&; Khoury, J. T.; Alvarez, M. M.; Whetten, R.3$cience
density of states of an array of Ag nanodots at low temperatures1 89 g”_ c b Savkally. R. 3. Shi 3 3- Henrichs. S. E - Heath
is asymmetric with respect to adding or removing an electron 3 R(S?cie?]clglrégf 277 %%y' - Shiang, J. J.; Henrens, s. £.; Heath,

18 i o ’ ’ )
were recently rep_ortelc?. There is no observed asymmetry (10) Collier, C. P.; Vossmeyer, T.; Heath, J.Anu. Re. Phys. Chem.
when the array is more closely packed and/or when the 1998 49, 371.
temperature is raised. We have argitadat broken symmetry (11) Heath, J. R.; Knobler, C. M.; Leff, D. \d. Phys. Chem. B997,
is characteristic of arrays of quantum dots and can be directly 101, 189. ' _ _ _
observed in the failure of selection rules of optical spectroscopy. £ (12) TZG_ Un'tr’jfy ggqug for the _Eaéualt_lonltgsEll?%tr?mzczEnergy Matrix
STM is a different type of experiment, where electrons are eTge”ts f:(nze, -*Rs-yl_dprm%eg fer w;,/CH N o.Y k Loss
detached or attached. It is analogous to photoelectron spectros- (13) Hoffmann, R Solids and Surface - New rork, ’
. (14) Hubbard, JProc. R. Soc1963 276, 238.
copy and most closely resembles the Ne(gating(utraly— : R Lo ’ -
. : 32 d (15) Kim, S.-H.; Meideiros-Ribeiro, G.; Ohlberg, D. A. A.; Williams,
Po(sitive) scheme of Wae and Berry:®> We presente R. S.; Heath, J. RJ. Phys. Chem. B999 103 10341.
computations of the .den3|ty Of. states of an array of Ag nanQdOtS (16) Lang, N. D. STM Imaging of Single-Atom Adsorbates on Metal.
that are in accord with all available experimental observations. In Scanning Tunneling Spectroscopy; Wiesendanger, R., Githerodt,
The asymmetry of the tunneling current vs voltage spectrum H--J., Eds.; Springer-Verlag: Berlin, 1993; Vol. 29, p 7. _
reflects the asymmetry in the energies of the states of the system, (17) Markovich, G.; Caller, C. Z;g';g”éghfigc" E.; Remacle, F.; Levine,
The physical basis of this is the low charging energy of the " eafh, J. kace. Lhem. e AR
S . . . (18) Medeiros-Ribeiro, C.; Ohlberg, D. A. A.; Williams, R. S.; Heath,
dots, which is comparable in magnitude to the coupling between ; g phys Re. B 1999 59, 1633.
adjacent dots. Under such circumstances the electrons are (1) mott, N. F. Metal-Insulator Transitions Taylor & Francis:
strongly correlated. When the lattice is compressed, the couplingLondon, 1990.
between adjacent dots dominates and one can assign electrons (20) Paldus, J. Unitary Group Approach to Many-Electron Correlation
| 9 / ) .
to molecular orbitals. The orbital energy determines the ioniza- hpﬂrﬂ?_'efgl- 'rr;”r‘]‘t* Ldf‘r:taWJG'E‘éP fSorr;Ee f’f’“éat'r‘l?ﬂ ng'le_c\t/rolmgz'z”erlgy
tion potential or the electron affinity (Koopmans theorem). If airix ElementsHinze, ., £C.; Springer. Berin, ; VO 24 P
. . L - (21) Parr, R. GQuantum Theory of Molecular Electronic Structure
the coupling also dominates the fluctuation in the energies of gepiamin: New York, 1963.
the sites, the molecular orbitals are delocalized and the spectrum 25y pijar, F. L.Elementary Quantum ChemistrylcGraw-Hill: New
is symmetric as for a metal. York, 1968.
At a finite temperature, when more states can contribute to  (23) Free Electron Theory of Conjugated Molecul@att, J. R., Ed.;
the (charge weighted, local) density of states at a given voltage, Wiley: New York, 1964. _ ‘
the asymmetry is reduced and eventually disappears at a highse%‘é)zgmath' D.; Levi, Y.; Tarabiah, M.; Millo, CPhys. Re. B 1997
enough temperature. ' .

6. Concluding Remarks
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